The Ocean's Mesoscale, its Impacts on Pelagic Ecosystems and How Satellite Viewing Changed (Created?) Interdisciplinary Oceanography

Dave Siegel UC Santa Barbara

Thanx to Dennis McGillicuddy (WHOI), Dudley Chelton (OSU), Mete Uz (NSF) & many more...

Franklin & Folgers's Gulf Stream

Stommel's Gulf Stream

Stommel's Gulf Stream

Stommel's Gulf Stream

The Gulf Stream From Space

The Start of Interdisciplinary Oceanography??

Satellite observations changed how oceanographers worked...

Warm Core Rings program

Brown et al. Science [1985]

Satellite Altimetry to Guide Sampling

Altimeter Sampling in a Representative 7-Day Period

Increased sampling enables individual eddies to be clearly assessed

Resolved the Rossby Wave / Mesoscale Eddy controversy

2 week trajectory of a surface drifter in a cyclonic eddy in the Gulf Stream

Sea Surface Height - SSH

Mesoscale eddies are ubiquitous

Scales are 10's to 100's km - f(latitude)

Lifetime of weeks to years

Both cyclones (CCW) & anticylones (CW) are found

Geostrophy allows currents to be assessed

Cyclonic and Anticyclonic Eddies with Lifetimes ≥ 16 Weeks (27,456 total)

Westward Propagating Features

Propagating Speed

- Calculated following SSH features at a latitude
- Features propagate with speeds similar to linear Rossby waves
- Discrepancies have led to much important theoretical work
- Increased sampling makes it clear these features are eddies

Biological Role of Mesoscale Eddies

- Eddies will lift & depress isopycnal surfaces & advect populations horizontally
- Seems like it should be important for the biogeochemistry & ecology of the open ocean
- Is there a biological response to the propagation of mesoscale eddies?
- If so, what does this tell us about the biological carbon pump?

Propagating Biological Features

From Uz et al. Nature [2001]

Vertical Eddy Pumping

Vertical Eddy Pumping

- Mesoscale eddies will lift & depress isopycnals several 10's to several 100 m
- This will lift & depress nutrient surfaces
- Thereby bringing nutrient replete waters into the euphotic zone

An Eddy-driven Plankton Bloom

- Idealized eddy-resolving model of the Sargasso Sea (POLYMODE)
- Mean nitrate is f(density)
- Nitrate is removed when upwelled to the euphotic zone & remineralized if below its mean
- Nitrate flux patterns are consistent with isopycnal doming
- Supports the vertical nutrient pumping hypothesis

Impacts of Eddies and Mixing on Plankton Community Structure and Biogeochemical Cycling in the Sargasso Sea

McGillicuddy
Ledwell
Jenkins
Buesseler
Davis
Falkowski
Hansell
Siegel
Carlson
Bates
Johnson
Steinberg

http://science.whoi.edu/users/mcgillic/eddies/Eddies_Project.html

Types of Eddies in the Sargasso Sea

Our Initial Hypothesis:

- Cyclones & Mode-Water Eddies will have enhanced primary production as they form and intensify
- Anticyclones will not

Eddy Hunting Using Altimetry

EDDIES 2005 field year

2004/2005 EDDIES Cruises

10 different eddies sampled, 5 more than once

Cyclones occupat	tions
C1 – OC404-1 (3), OC404-4 (1)	4
C2 – OC404-1, OC404-4	2
Cold-core GS Ring	1
C3 – OC415-1	1
C5 – OC415-1 (2)	2
Anticyclones	
"Regular"	
A2 – OC404-1 (XBT/ADCP/VPR only)	1
A3 – OC404-1 (XBT/ADCP/VPR only)	1
18° Mode-water eddy	
A4 – OC415-1 (2), OC415-2, OC415-3 (2), OC415-4	6
16° Mode-water eddies	
A1 – OC404-1	1
A5 – OC415-1, OC415-3	2

Target Feature A4

Sea Level Anomaly

Cross Section

Oceanus 415-1 A4 Survey NW-SE CTD Section

Distance (km)

BATS vs A4 Chlorophyll Maxima

ChI in the A4 ChI max is higher than any found from BATS

Cyclones are lower than AC...

McGillicuddy & others Science [2008]

Diatoms in the A4 Chl Maximum

Chain forming diatom Chaetoceros spp.

Diatom cell counts:

8000 colonies per liter X 15 cells per colony = $\sim 10^5$ cells per liter

Typical abundances: 1-10 cells per liter

Eddy induced enhancement:

4-5 orders of magnitude above background

A4 Productivity vs. BATS

A tracer release provides a clue about the extraordinary productivity in A4

Tracers Reveal Upwelling & Enhanced Vertical Mixing

Ledwell et al., *DSR-2* [2008]

Upwelling by Eddy-Wind Interaction?

Ekman Pumping

$$w_E = \frac{1}{\rho f} \left(\frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y} \right)$$

Stress is f(wind-current)

$$\tau = \frac{\rho_a K_a}{(1+\varepsilon)^2} |u_a - u_o| (u_a - u_o)$$

Dewar & Flierl, 1987 Martin & Richards, 2001

Upwelling by Eddy-Wind Interaction?

Simple theory is consistent with tracer upwelling estimates *Eddy-Ekman Pumping* mechanism

McGillicuddy et al. Science [2008]

Eddy Centric Views of A4

Satellite sensed Chl values following eddy A4 are small (& nearly unmeasurable...)

Provides sense of CW rotation of background Chl

Suggests an Eddy Advection Mechanism

Siegel et al. DSR-II [2008]

Views Over Many Eddies

Merged sea level anomalies are filtered to asses eddy locations Blue cyclones (CCW) & red are anticyclones (CW)

Tracked over time to assess eddy tracks

Provide an eddy-centric coordinate system to assess biological patterns

Chl patterns following 5,161 cyclones & 3,804 anticyclones Both *eddy pumping* & *eddy advection* signals are apparent

Vertical Eddy Pumping Eddy-Ekman Pumping Eddy Advection

Anticyclone

Not all mechanisms are biogeochemically relevant

BGC response is more often at depth

Siegel et al. DSR-II [2008]

EDDIES Summary

- Merged altimetry are great for hunting eddies
- Reponses are large in primary production,
 biomass & community structure but subsurface
- Biological response of Anticyclones > Cyclones;
 contrary to original Eddy Pumping hypothesis
- Supports an Eddy-Ekman Upwelling mechanism
- Evidence for an *Eddy Advection* mechanism too Uz et al. *Nature* [2001] & Killworth et al. *JGR* [2004]

Biological Role of Mesoscale Eddies

- Several mechanisms link eddies to ocean color signals, but not all are BGC relevant
 - Still many open questions...
- Hard part is assessing the subsurface & links from the euphotic zone into the ocean interior
 - Concentrated field efforts are needed
- New tools to assess physical-biological couplings...

Lagrangian Coherent Structures

Maybe they can provide some bio-eddy insights...

Attracting & Repelling LCS's

Measures the separation of particles as f(time)

Time scale of separation (Lyapunov exponent) characterizes repelling (forward in time) & attracting (backward) LCS's Need a 2-D velocity field (model or obs; can be f(time)) Repelling & attracting LCS's have biological interpretation

LCS's in Mediterranean Sea

Repelling manifolds for one day in a 1/8° circulation model High values of FSLE "line up" creating "separatrixs" that differentiate the flow field into subregions (eddies, etc.)

Value of FSLE defines mixing time scale

D'Ovidio et al. GRL [2004]

LCS's in Mediterranean Sea

Red repelling & blue attracting LCS's

Coherent structures for both repelling & attracting FSLE's

Structure widths are narrow (a few km's)

Biologically relevant

interpretations - repelling LCS's are divergent & attracting LCS's are convergent

Great Frigatebirds

Can fly great distances to forage

Diet made up of flying fish & Ommastrephid squid

Frigatebirds cannot get wet

Sometimes a klepto-parasite

Often found foraging in association with tuna & dolphin schools

Great frigatebirds are a top predator found throughout the tropical oceans

Great Frigatebird Foraging

Argos locations of Great Frigatebirds during long trips (black) & short trips (red) between August 18 & September 30, 2003

Great Frigatebird Foraging & LCS's

Week Sept 24, 2003

Week Oct 6, 2003

Used altimetry & winds to calculate FSLE's

Tew Kai et al. PNAS [2009]

Great Frigatebird Foraging & LCS's

Frigatebirds are found over LCS's >63% time

Overall, LCS's are "neutral" 70-75% time

Near-equal propensity for attracting & repelling LCS's

Attracting LCS's likely will help in active foraging

Repelling LCS's may help in navigation by smell (via DMS??)

Tew Kai et al. PNAS [2009]

Ocean Biology & LCS's

- LCS's characterize straining of the surface flow
 - Local regions of upwelling & downwelling
 - Convergence & divergence of water masses
- Applications in a wide host of problems
 - Fishery oceanography, Purposeful Fe addition,
 Linking euphotic & twilight zone processes via aggregate production, Pollution monitoring & mitigation, Search & rescue, etc.
- Easy to calculate given quality velocity fields

Future for Pelagic Bio-Eddy Science

- Continued quality observations are key
 Both altimetry (future=good) & ocean color (not so good)
- NASA's Decadal Survey Missions
 SWOT 1 km sea level fields
 - ACE, Geo-CAPE & HyspIRI ocean color on many time / space scales & by different ways
- Robust links to field observations
 - Process studies are needed to link to ocean interior Gliders, ARGO floats, etc.
 - Operational 4-D circulation models

Role of Advection

Decay of the North Atlantic spring bloom

Flow fields from MERCATOR operational model

Passive particles placed north of 45°N

Particle distribution & Chl image are eerily similar on July 7

SWOT Synthetic Aperture Radar (SAR) Interferometer

SWOT is a Ka-band (~35 GHz) SAR interferometric system with two 60-km swaths separated by a 10-km nadir gap.

The spatial resolution of the SAR is ~50 m for measurements of land surface water (lakes, wetlands and rivers) for hydrology studies.

For oceanographic applications, the raw measurements will be averaged over 1 km by 1 km cells to achieve a measurement accuracy of ~1 cm.